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Quantum mechanics II, Solutions 14 - Irreps of SO(3) and addition
of angular momentum

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard
Puig, Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : Clebsch-Gordan Coefficients

Here we consider breaking down tensor product representations of SO(3) into its irreducible
representations.

— Use the ladder operators to show that 1 ⊗ 1 = 2 ⊕ 1 ⊕ 0.
Hint : The ladder operators for the composite system is

J± = j± ⊗ 1 + 1 ⊗ j± (1)

The first thing to remember is the ladder operator in the tensor product space.

J± = j± ⊗ 1 + 1 ⊗ j± (2)

Now, we use the highest weight decomposition method. The highest spin state is obviously
|J = 2,m = 2⟩ = |11⟩. Now, let us apply the lowering operator once :

J− |11⟩ =
√

2 |01⟩ +
√

2 |10⟩ (3)

Normalizing, we get |J = 2,m = 1⟩ = 1√
2(|10⟩ + |01⟩). Applying the lowering operator once

more :

J2
− |11⟩ =

√
2J−(|10⟩ + |01⟩) =

√
2(

√
2 |00⟩ +

√
2 |1,−1⟩ +

√
2 |−1, 1⟩ +

√
2 |00⟩) (4)

Normalizing, we get |J = 2,m = 0⟩ = 1√
6(|1,−1⟩ + 2 |00⟩ + |−1, 1⟩). We proceed similarly :

J3
− |11⟩ = 2J−(|1,−1⟩ + 2 |00⟩ + |−1, 1⟩)

= 2
√

2(|0,−1⟩ + 2 |−1, 0⟩ + 2 |0,−1⟩ + |−1, 0⟩)
(5)

Normalizing, we get |J = 2,m = −1⟩ = 1√
2(|0,−1⟩ + |−1, 0⟩). Finally,

J4
− |11⟩ = 6

√
2J−(|0,−1⟩ + |−1, 0⟩)

= 12(|−1,−1⟩ + |−1,−1⟩)
(6)

Normalizing, we get |J = 2,m = −2⟩ = |−1,−1⟩. You can check that if you apply the lowering
operator once more, you get 0, meaning that this is lowest state of this rep. To find the other
sectors, we must first find the set of states which are orthogonal to the previous ones, and find
the highest weight among those. Doing this, you get :

|J = 1,m = 1⟩ = 1√
2

(|10⟩ − |01⟩) (7)
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Remark : Note that this is just the vector orthogonal to |J = 2,m = 1⟩ and built out of the
same states. This is actually not a coincidence. Can you guess what happens in the general
case ?
Now, again we apply the lowering operator :

J− |J = 1,m = 1⟩ = 1√
2
J−(|10⟩−|01⟩) = |00⟩+ |1,−1⟩−|00⟩−|−1, 1⟩ = |1,−1⟩−|−1, 1⟩ (8)

Therefore, |J = 1,m = 0⟩ = 1√
2(|1,−1⟩ − |−1, 1⟩) Applying the lowering operator once more :

J− |J = 1,m = 0⟩ = |0,−1⟩ − |−1, 0⟩ (9)

Therefore, |J = 1,m = −1⟩ = 1√
2(|0,−1⟩ − |−1, 0⟩). If we apply the lowering operator once

more, we get zero which means that we have arrived at the lowest state. Finally, the only state
orthogonal to all the above, is the unique state |J = 0,m = 0⟩ = 1

3(|1,−1⟩ − |00⟩ + |−1, 1⟩).
You should check that J± |J = 0,m = 0⟩ = 0, meaning that this is the 0. We can conclude
that 1 ⊗ 1 = 2 ⊕ 1 ⊕ 0.

— Now show that 2 ⊗ 1 = 3 ⊕ 2 ⊕ 1
We follow similar to the previous part :

|J = 3,m = 3⟩ = |21⟩ (10)

Apply lowering operator :

J− |J = 3,m = 3⟩ = 2 |11⟩ +
√

2 |20⟩

→ |J = 3,m = 2⟩ =
√

2
3 |11⟩ + 1√

3
|20⟩

(11)

Again :

J− |J = 3,m = 2⟩ = 2 |01⟩ + 2
√

3
3 |10⟩ + 2

√
3

3 |10⟩ +
√

2
3 |2,−1⟩

→ |J = 3,m = 1⟩ =
√

1
15 |2,−1⟩ +

√
8
15 |10⟩ +

√
2
5 |01⟩

(12)

Again :

J− |J = 3,m = 1⟩ = 2
√

1
15 |1,−1⟩ + 4

√
1
5 |00⟩ + 4

√
1
15 |1 − 1⟩ + 2

√
3
5 |−1, 1⟩ + 2

√
1
5 |00⟩

→ |J = 3,m = 0⟩ = 1√
5

|1,−1⟩ +
√

3
5 |00⟩ + 1√

5
|−1, 1⟩

(13)
At this point you should know how to proceed. We provide the answers so that you can check
the final results :

|J = 3,m = −1⟩ =
√

1
15 |−2, 1⟩ +

√
8
15 |−10⟩ +

√
2
5 |0,−1⟩

|J = 3,m = −2⟩ =
√

2
3 |−1,−1⟩ + 1√

3
|−2, 0⟩

|J = 3,m = −3⟩ = |−2,−1⟩

(14)
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Again, if you apply the lowering operator once more, you get zero. Now, look at the comple-
mentary subspace and find the highest weight (the state which is annihilated by the raising
operator).
Remark : The trick is again to just look at |J = 3,m = 2⟩ and find the orthogonal vector to it
consisting only the same vectors !
That is :

|J = 2,m = 2⟩ =
√

2
3 |20⟩ − 1√

3
|1, 1⟩

|J = 2,m = 1⟩ = 1√
3

|2,−1⟩ + 1√
6

|1, 0⟩ − 1√
2

|0, 1⟩

|J = 2,m = 0⟩ = 1√
2

|1,−1⟩ − 1√
2

|−1, 1⟩

|J = 2,m = −1⟩ = − 1√
3

|−2, 1⟩ − 1√
6

|−1, 0⟩ + 1√
2

|0,−1⟩

|J = 2,m = −2⟩ = −
√

2
3 |−2, 0⟩ + 1√

3
|−1,−1⟩

(15)

Now, for the final time, we fine the complementary subspace to all the above vectors, find the
highest weight and do the procedure. The final answer is :

|J = 1,m = 1⟩ =
√

3
5 |2,−1⟩ −

√
3
10 |10⟩ + 1√

10
|01⟩

|J = 1,m = 0⟩ =
√

3
10 |1,−1⟩ −

√
2
5 |00⟩ +

√
3
10 |−1, 1⟩

|J = 1,m = −1⟩ = −
√

3
5 |−2, 1⟩ +

√
3
10 |−1, 0⟩ − 1√

10
|0,−1⟩

(16)

— What does this tell you about the addition of angular momentum ?
— An application of the Clebsch-Gordon coefficients is the Wigner-Eckart theorem that you have

seen during the lectures. Let us see an easy example of how it works. First we should understand
what it means that an operator transforms under SO(3). Take the position operator, x. We
can write it in terms of spherical harmonics. Given that :

Y −1
1 = 1

2

√
3

2π
x− iy

r

Y 0
1 = 1

2

√
3
π

z

r

Y 1
1 = −1

2

√
3

2π
x+ iy

r

(17)

Can you write the position operator in terms of these spherical harmonics ?
Let us define (for convenience) :

T 1
q =

√
4π
3 rY q

1 . (18)

Then the position operator can be written as :

x =
T 1

−1 − T 1
1√

2
(19)
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— The spherical harmonics Y m
l form a representation of SO(3). This is just similar to what you

saw in the previous problem set(part 2 of problem 1, set 13). When we say that an operator
transforms under SO(3), this means that Y m

l |J,M⟩ transforms the same as |l,m⟩ |J,M⟩. How
does x, transform under SO(3) ?
x transforms like 1√

2(|J = 1,M = −1⟩ − |J = 1,M = 1⟩), where the first term corresponds to
T−1

1 and the second term corresponds to T 1
1 .

— Assume that we want to calculate ⟨n, j,m| x̂ |n, j,m⟩. Using the Wigner-Eckart theorem, what
can you say without calculating any integrals ?
By Wigner-Eckart, we have :

⟨n, j,m|x |n, j,m⟩ = ⟨n, j,m|
T 1

−1 − T 1
1√

2
|n, j,m⟩

= 1√
2

⟨n, j| |T 1| |n, j⟩ (⟨j,m|j,m, 1,−1⟩ − ⟨j,m|j,m, 1, 1⟩)
(20)

Notice that both terms in the parenthesis are zero by Clebsch-Gordon. This means that this
amplitude is zero by group theory ! Moreover, the power of Wigner-Eckart is through the
fact that every operator can be expanded in terms if harmonic functions (because harmonic
functions form an orthonormal basis of the space of functions) and then we can apply the
theorem. This means that there is nothing special about the x operator. Can you do the same
argument for y ?
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Problem 2 : Two interacting spins

Consider two spins Ŝ1, Ŝ2, with spin 1 (Ŝ2
1 = Ŝ2

2 = S(S + 1) = 2) described by the Hamiltonian

H = J(Ŝ1 · Ŝ2) − b1Ŝ
z
1 − b2Ŝ

z
2 . (21)

1. Consider first the case in which b1 = b2 = 0. What is the symmetry group of the Hamiltonian
in this case ? What are the corresponding conserved quantities (think in terms of commutator
with the Hamiltonian) ?
When b = 0, the system is invariant under spin rotations and under permutations of the two
spins. The spin rotations are described by the SO(3) group (the extension to SU(2) is here
unnecessary since the spin is integer and not half-integer). The SO(3) group is continuous and
has as infinitesimal generator the total angular momentum Ŝ = Ŝ1 +Ŝ2. Thus, Ĵ is a conserved
quantity.
It can be checked in fact that

[Ŝα
1 + Ŝα

2 , J(Ŝ1 · Ŝ2)] = iJϵαβγ(Ŝγ
1 Ŝ

β
2 + Ŝγ

2 Ŝ
β
1 ) = 0 . (22)

This equation, as usual, has a double interpretation. It can be viewed as the statement that
the Hamiltonian is invariant under rotations [Ŝ, Ĥ] = 0. On the other hand, it also means that
the total spin is invariant under time translations, since the Hamiltonian is the generator of
time translations. Thus the total spin is conserved.
The symmetry under permutations is discrete and is described by the Z2 group. Thus the full
invariance group is Z2×SO(3). The permutation operation commutes with all rotations.

2. Calculate the energy spectrum and the degeneracies of the energy levels for b1 = b2 = 0. Hint.
Express the scalar product Ŝ1 · Ŝ2 in terms of the total angular momentum.
Since the Hamiltonian has SO(3) symmetry, we can diagonalize it simultaneously with Ŝ2 and
with Ŝz. This implies that energy levels can be labeled with the quantum numbers S, Sz,
corresponding to the total angular momentum.
By the addition of angular momenta, 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2 we can know that the quantum
number S can take three values, S = 0, 1, 2. The three values S = 0, S = 1, S = 2 correspond
thus to three energy levels of the system. Due to the SO(3) symmetry, the level with angular
momentum S must have degeneracy 2S + 1, and the energy cannot depend on the quantum
number Sz whose values range from −S to +S.
The energy can be calculated explicitly as follows. The scalar product (Ŝ1 ·Ŝ2) can be expressed
by completing the square as

(Ŝ1 · Ŝ2) = 1
2[(Ŝ1 + Ŝ2)2 − Ŝ2

1 − Ŝ2
2] = 1

2[S(S + 1) − 2 × 1(1 + 1)] = 1
2[S(S + 1) − 4] . (23)

Thus the energy levels are E(S) = J [S(S + 1) − 4]/2. In particular, note that there is no
"accidental degeneracy" between levels with different values of S.
For J > 0 the ground state is a "singlet" with zero angular momentum and energy E = −2J .
The first excited state is a "triplet" with S = 1, and E = −J . The second excited state, fivefold
degenerate, has S = 2 and E = +J .

3. Consider now the case in which b1 ̸= b2 ̸= 0. What is the symmetry group, and what are the
associated conserved quantities ? Without explicitly solving the problem, discuss how many
energy levels you expect, and what are the corresponding degeneracies.
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When b1 and b2 are different from zero, the SO(3) symmetry is broken, as there is a special
direction in space (in this case the z direction), which is selected by the external fields b1,
b2. The system however retains an SO(2) symmetry, under rotations with an axis along z.
Thus, Ŝz remains conserved and Sz is still a good quantum number. For b1 ̸= b2 the Z2 group
(permutation S1 ↔ S2 of the two spins) is not a symmetry of the Hamiltonian. Thus, the
symmetry is reduced to SO(2).
From group theoretical arguments, we can deduce that Sz is a good quantum number. This
simplifies the problem significantly, as we can reduce the initial problem (the diagonalization
of a 9 × 9 matrix) into a block diagonalization, where the blocks correspond to the possible
values of Sz. However, we can derive less conclusions in comparison with the previous case,
where SO(3) symmetry was present.
For example, consider the states with Sz = 0. There are three of these states, | + 1,−1⟩,
|0, 0⟩, | − 1,+1⟩. In presence of SO(3) symmetry, the eigenstates of the Hamiltonian must
be eigenstates not only of Ŝz, but also of Ŝ2. This fixes-using only symmetry arguments-the
precise superpositions of | + 1,−1⟩, |0, 0⟩, | − 1,+1⟩ which constitute the eigenstates of H.
When b1 ̸= b2 ̸= 0, instead, the eigenstates belonging to the sector Sz = 0 are superpositions
of | + 1,−1⟩, |0, 0⟩, | − 1,+1⟩ which have to be calculated by explicitly diagonalizing the
Hamiltonian inside the block.
In the case b1 ̸= b2, group theory does not imply any degeneracy at all in the spectrum. For
generic values of the parameters, the spectrum will consist of 9 nondegenerate levels (9=3×3
is the total dimension of the Hilbert space).
In group-theory language, SO(2) is an Abelian group and thus has only one-dimensional irredu-
cible representations. Thus, a system which has only SO(2) symmetry and no other symmetry,
does not have a syemmtry-related degeneracy (although it may have accidental degeneracies).

4. Calculate the spectrum explicitly in the case in which b1 = b2 = b ̸= 0.
For b1 = b2, the symmetry becomes Z2× SO(2). The group is still Abelian, because the
rotations and the permutation commute among each other. Thus we still expect a spectrum
consisting of 9 nondegenerate levels.
The problem can be solved by a trick. The Hamiltonian for b1 = b2, in fact, has the property
that it commutes with Ŝ2. This is not a consequence of any symmetry, but just a simple pro-
perty of the specific Hamiltonian considered here. Then, S remains a good quantum number,
and the energies are E = J [S(S + 1) − 4]/2 − bSz.
The fact that S is a good quantum number is not a consequence of symmetry : the symmetry
here is broken to SO(2) and thus there is no group theoretical reason why S should remain a
good quantum number.
To proceed more systematically, using only the real group theoretical information which we
have we can explicitly block-diagonalize the Hamiltonian. The blocks are given by irreducible
representations of the group Z2× SO(2) group. The sectors with Sz = 2 have only one state,
so the block is one-dimensional and the block matrix is 1 × 1. This means that | + 1,+1⟩ and
| − 1,−1⟩ are exact eigenstates. Their energy is

E(Sz = +2) = ⟨+1,+1|H| + 1,+1⟩ = J − 2b . (24)

E(Sz = −2) = ⟨−1,−1|H| − 1,−1⟩ = J + 2b . (25)

For the Sz = 1 sector we have two states | + 1, 0⟩, |0,+1⟩. Using Z2 symmetry we can further
reduce the blocks considering symmetric and antisymmetric combinations. We arrive again
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at two exact states, (| + 1, 0⟩ + |0,+1⟩)/
√

2, (| + 1, 0⟩ − |0,+1⟩)/
√

2 which must be exact
eigenstates.
Their energies are

E(Sz = +1, p = +1) = J − b (26)

E(Sz = +1, p = −1) = −J − b (27)

In the expression, p is the "parity" quantum number associated with the Z2 group. p = 1 for
states which are even under permutation of the two spins and p = −1 for states that are odd.
Similarly for E(Sz = −1, p) we find E(Sz = −1, p = 1) = J+b, E(Sz = −1, p = −1) = −J+b.
Thus the states are degenerate with those having E(Sz = +1, p). This degeneracy is accidental
and not related to symmetry because the corresponding states are in different irreducible
representations of Z2×SO(2).
For the S = 0 sector, we have three states : | + 1,−1⟩, |0, 0⟩, and | − 1,+1⟩. Due to the
Z2 symmetry, the states which are respectively even and odd under permutation of the two
spins cannot mix. Thus the state (| + 1,−1⟩ − | − 1,+1⟩)/

√
2, which is odd, must be an exact

eigenstate. The corresponding energy can be calculated explicitly.

E(Sz = 0, p = −1) = 1
2 (⟨+1,−1| − ⟨−1,+1|)H (| + 1,−1⟩ − | + 1,−1⟩)

= 1
2 (⟨+1,−1| − ⟨−1,+1|)

(
JŜz

1 Ŝ
z
j − b1Ŝ

z
1 − b2Ŝ

z
2

)
(| + 1,−1⟩ − | + 1,−1⟩)

(28)

The calculation simplifies because the operators Sx
i , Sy

i have non-zero matrix elements only
between states for which the eigenvalue of Sz changes by ±1. The result is :

E(Sz = 0, p = −1) = −J . (29)

Finally, we have to consider the two states |0, 0⟩, and 1√
2(| + 1,−1⟩ + | − 1,+1⟩). For these we

have to block-diagonalize a 2 × 2 Hamiltonian

hS=0,p=+1 =
∣∣∣∣∣⟨0, 0|H|0, 0⟩ ⟨0, 0|H|ϕ⟩

⟨ϕ|H|0, 0⟩ ⟨ϕ|H|ϕ⟩ ,

∣∣∣∣∣ (30)

where |ϕ⟩ = (|1,−1⟩ + | − 1, 1⟩)/
√

2. Calculating the matrix explicitly gives

hS=0,p=+1 =
∣∣∣∣∣ 0

√
2J√

2J −J

∣∣∣∣∣ (31)

The eigenvalues are J/2±3J/2 = 2J , −J . Thus, as found also above, we see that the spectrum
has the nine levels 2J + 2b, 2J+

Group theory in a nutshell version :
Let’s now consider the case of a particle moving in 1D in a periodic potential V (x). That is

under the Hamiltonian

H = p2

2m + V (x) where V (x+ a) = V (x) . (32)

We will suppose that the particle moves on a 1-dimensional lattice consisting of N sites and periodic
boundary conditions.

What is the symmetry in group in this case ? Well the Hamiltonian is left unchanged by any
translation Ua by a distance a, i.e., x → Ux = x + a. It follows, that the symmetry group consists
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of {I, Ua, U
2
a , · · · , UN−1

a }. Note that given the periodic boundary conditions we have that UN
a = I.

Thus the symmetry group is just the familiar cyclic group ZN . In the problem sheet, you’ll then use
your understanding of the irreps of ZN to determine the form of the eigenfunctions of H.

Since the group is abelian, it can only have 1-dimensional irreducible representations. Hence
ψ′(x) ≡ Tψ(x) = ζψ(x), so that T is represented by a complex number ζ. But since wave functions
are normalized,

∫
dx|ψ′(x)|2 =

∫
dx|ψ(x)|2, we have |ζ| = 1. Thus, we can write ζ = eika with k real

(and with dimension of an inverse length). Since ei(ka+2π) = eika, we may restrict k to the range

−π

a
≤ k ≤ π

a

This range is the simplest example of a Brillouin zone.
The symmetry group is just the familiar cyclic group ZN . The condition eiNka = 1 thus implies

that k = 2π
Naj with j an integer. For N macroscopically large, the separation ∆k between neighboring

values of j, of order 2π
Na , is infinitesimal, and so we might as well treat k as a continuous variable

ranging from −π
a to π

a .
It is convenient and conventional to write

ψ(x) = eikxu(x) (33)

with u(x + a) = u(x). This statement is known as Bloch’s theorem. (Of course, any ψ(x) can be
written in the form (11) ; the real content is the condition u(x+ a) = u(x).)

Note that this is a general statement completely independent of the detailed form of V (x). Given
a specific V (x), the procedure would be to plug (11) into the Schrödinger equation and solve for
u(x) for the allowed energy eigenvalues, which of course would depend on k and thus can be written
as En(k). As k ranges over its allowed range, En(k) would vary, sweeping out various energy bands
labelled by the index n.
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